Level 3 BLAS
Functions
template<class M1, class T, class M2, class M3> M1 & boost::numeric::ublas::blas_3::tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) triangular matrix multiplication |
template<class M1, class T, class M2, class C> M1 & boost::numeric::ublas::blas_3::tsm (M1 &m1, const T &t, const M2 &m2, C) triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix |
template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) general matrix multiplication |
template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T) |
template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H) |
template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T) |
template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H) |
template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::axpy_prod (const
matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m,
bool init=true) computes |
template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::opb_prod (const
matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m,
bool init=true) computes |
Function Documentation
1.
|
|
triangular matrix multiplication |
2.
|
|
triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix |
3.
|
|
general matrix multiplication |
4.
|
|
symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)
|
5.
|
|
hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)
|
6.
|
|
generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)
|
7.
|
|
generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)
|
Copyright (©) 2000-2004 Michael Stevens, Mathias Koch, Joerg Walter,
Gunter Winkler
Copyright (©) 2021 Shikhar Vashistha
Use, modification and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).